- 1. Let $\pi : \mathcal{X} \to \mathcal{Y}$ be a quotient map. Show that if each set $\pi^{-1}(\{y\})$ is connected and if \mathcal{Y} is connected then \mathcal{X} is connected.
- 2. Let $f: S^1 \to \mathbb{R}$ be a continuous map. Show that there exists a point x of S^1 such that f(x) = f(-x).
- 3. Let *G* be a topological group and let X_1 and X_2 be two closed subsets of *G* where X_2 is compact. Show that $X_1 \cdot X_2$ is a closed subset of *G*.
- 4. Let $f : \mathcal{X} \to \mathcal{Y}$ be a continuous map of compact metric spaces. Show that f is uniformly continuous.
- 5. A topological space A is said to have no isolated points if there does not exist any singleton set $\{a\} \subset A$ which is open in A. Let \mathcal{X} be a compact Hausdorff topological space that does not have any isolated points. What are the possibilities for the cardinality of \mathcal{X} ?
- 6. A topological space \mathcal{X} is said to be limit point compact if every infinite subset of \mathcal{X} has a limit point. Prove that if \mathcal{X} is compact it is limit point compact.
- 7. Let G be a locally compact topological group and let H be a subgroup of G. Show that G/H is locally compact.
- 8. Let \mathcal{X} be a topological space that has a countable basis. Show that \mathcal{X} has a countable dense subset. A topological space that has a countable dense subset is called **separable**.
- 9. (a) Let \mathcal{X} be a topological space that has a countable basis. Show that every open covering of \mathcal{X} has a countable subcover. A topological space in which every cover has a countable subcover is called a **Lindelöf** space.
 - (b) Let \mathcal{X} and \mathcal{Y} be topological spaces and let $\mathcal{Z} := \mathcal{X} \times \mathcal{Y}$. Which of the following statements are true and why
 - i. If \mathcal{X} is Lindelöf and \mathcal{Y} is Lindelöf then \mathcal{Z} is Lindelöf.
 - ii. If ${\mathcal X}$ is Lindelöf and ${\mathcal Y}$ is compact then ${\mathcal Z}$ is Lindelöf.
 - iii. If \mathcal{X} is compact and \mathcal{Y} is compact then \mathcal{Z} is compact.
- 10. Let $\pi : \mathcal{X} \to \mathcal{Y}$ be a surjective continuous map of topological spaces which is closed. Show that if \mathcal{X} is normal then \mathcal{Y} is normal.
- 11. Let \mathcal{X} be a topological space and let \mathcal{Y} be a compactification of \mathcal{X} . Let $\beta(\mathcal{X})$ be the Stone-Čech compactification of \mathcal{X} . Show that there exists a continuous closed map $g : \beta(\mathcal{X}) \to \mathcal{Y}$ which is the identity on \mathcal{X} .
- 12. Let \mathcal{X} be a topological space and G a topological group. A G-action on \mathcal{X} is defined by the following :
 - (a) A continous map $f: G \times \mathcal{X} \to \mathcal{X}$ where we shall denote $f(g, x) = g \cdot x$.
 - (b) $e \cdot x = x$ where e denotes the identity of G.
 - (c) $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$ for all $g_1, g_2 \in G$ and $x \in X$. Let $R \subset X \times X$ be defined as follows:

$$R := \{ (x_1, x_2) \in \mathcal{X} \times \mathcal{X} \mid x_1 = g \cdot x_2 \text{ for some } g \in G \}.$$
(1)

Check that *R* defines an equivalence relation on \mathcal{X} . We shall denote \mathcal{X}/R by \mathcal{X}/G where it is a topoloogical space with the quotient topology for the quotient map $\pi : \mathcal{X} \to \mathcal{X}/G$. Check that if \mathcal{X} is T_2 or T_3 or T_4 then so is \mathcal{X}/G .

^{11/08/2023}