- 1. Are $(\mathbb{R}, +)$ (real numbers under addition) and $(\mathbb{R}_{>0}, \cdot)$ (strictly positive reals under multiplication) isomorphic as topological groups? Justify your answer.
- 2. Prove that a subgroup H of a topological group G is open if and only if it contains a non-empty open set.
- 3. Let *G* be a topological group. Let G_0 denote the connected component of the identity. Show that G_0 is a closed normal subgroup of *G*. Show that G/G_0 is a totally disconnected Hausdorff topological group.
- 4. Let $\phi : G \to H$ be a homomorphism of groups where G and H are topological groups. Show that ϕ is continuous if and only if ϕ is continuous at one point of G.
- 5. Give an example to show that an injective and surjective map of topological groups need not be an isomorphism of topological groups.
- 6. Let $A \subset G$ be an abelian subgroup of a topological group G. Show that the closure of A in G denoted by \overline{A} is also an abelian subgroup.
- 7. Let *G* be a topological group and let $H \subset G$ be an open subgroup. Show that *H* is also closed.
- 8. Let $(\mathbb{R}, +)$ be the topological group where \mathbb{R} is endowed with the standard Euclidean topology. Let $A \subset \mathbb{R}$ be a subgroup. Prove the following:
 - (a) If A is discrete then show that $A = a\mathbb{Z}$ for some real number $a \in \mathbb{R}$.
 - (b) If A is not a discrete subgroup then show that A is dense in \mathbb{R} .
- 9. Let G be a compact topological group and let $H \subset G$ be a closed subgroup. Show that H is open if and only if H has finite index in G.
- 10. Prove that $GL_n(\mathbb{C})$ is connected.