1. Let $f: X \to Y$ be a continous map. Recall, f is said to be proper if $f^{-1}(C)$ is a compact subset of X for every compact subset $C \subset Y$. Let $f(z) \in \mathbb{C}[z]$ be a polynomial. Let us denote by f the map $z \mapsto f(z)$ from $\mathbb{C} \to \mathbb{C}$. Is this f a proper map? Justify your answer.

Let $\hat{\mathbb{C}}$ denote the one point compactification of \mathbb{C} . Does $f : \mathbb{C} \to \mathbb{C}$ extend to a map $\hat{f} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$. Justify your answer.

- 2. Let *X* be a topological spaces. Show that if *X* has a countable basis, the collection of subsets A of *X* is countably locally finite if and only if it is countable.
- 3. Let X be a paracompact topological space.

Claim: Every open covering \mathcal{A} of X has a locally finite subcover.

Is the above Claim true or false? If true give a proof and if false give a counter-example.

- 4. Recall a map $p: X \to Y$ is called a perfect map if it is closed, surjective such that $p^{-1}(y)$ is compact for each $y \in Y$. Let $p: X \to Y$ be a perfect map. Show that if Y is paracompact so is X. If X is paracompact Hausdorff show that Y is paracompact.
- 5. Let G be a locally compact, connected topological group. Show that G is paracompact.
- 6. Let (X, d) be a metric space. A map $f : X \to X$ is called a contraction if there is a $0 < \alpha < 1$ such that $d(f(x), f(y)) \le \alpha \cdot d(x, y)$ for all $x, y \in X$. Show that if f is a contraction of a complete metric space then there is a unique $x \in X$ such that f(x) = x.
- 7. Let (Y, d) be a metric space and let $\mathcal{F} \subset C(X, Y)$.
 - (a) Show that if \mathcal{F} is finite then \mathcal{F} is equicontinuous.
 - (b) Show that if f^n is a sequence of functions that converges uniformly then the collection $\{f^n\}$ is equicontinuous.
 - (c) Let $f_n = x^n$ be the function $f_n : [0,1] \to \mathbb{R}$. Let $\mathcal{F} = \{f_n\}_{n \in \mathbb{N}}$. Is $\mathcal{F} \subset \mathcal{C}(I,\mathbb{R})$ equicontinuous?
- 8. Let X be a compact n-manifold show that X can be embedded in \mathbb{R}^m for some m.
- 9. Give an example of an *n*-manifold that cannot be embedded in \mathbb{R}^n .
- 10. Let $\beta(X)$ denote the Stone-Čech compactification of a topological space X. Show that X is connected if and only if $\beta(X)$ is connected.