- 1. Construct an explicit deformation retraction from $\mathbb{R}^n \setminus \{0\}$ onto S^1 .
- 2. Show that a retract of a contractible space is contractible.
- 3. Show that a space X is contractible if and only if every map $f : X \to Y$ for arbitrary Y is nullhomotopic.
- 4. Let X be a path-connected topological space. Show that $\pi_1(X)$ is abelian if and only if the base change homomorphism β_h depends only on the endpoint of the path h.
- 5. If X_0 is a path component of a topological space X containing the base point x_0 , show that the inclusion $X_0 \hookrightarrow X$ induces an isomorphism on π_1 (basepoint being x_0).
- 6. Construct infinitely many non-homotopic retractions $S^1 \vee S^1 \rightarrow S^1$.
- 7. Suppose $f_t : X \to X$ is a homotopy such that f_0 and f_1 are each the identity map. Show that for any $x_0 \in X$, $t \mapsto f_t(x_0)$ considered as a loop in $\pi_1(X, x_0)$ lies in the center.
- 8. Let X be the quotient space of S^2 obtained by identifying the north and south poles to a point. Put a cell complex structure on X and use this to compute its π_1 .
- 9. Show that the join X * Y of two non-empty spaces X and Y is simply connected if X is path-connected.
- 10. Let \widetilde{X} and \widetilde{Y} be two simply connected covering spaces of path-connected, locally path-connected spaces X and Y. Show that if $X \cong Y$ then $\widetilde{X} \cong \widetilde{Y}$.
- 11. Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion is injective.
- 12. Show that $H_0(X, A) = 0$ iff A meets every path component of X.
- 13. Show that $H_1(X, A) = 0$ if and only if $H_1(A) \to H_1(X)$ is surjective and each path component of X contains at most one path component of A.
- 14. Show that for the subspace $\mathbb{Q} \in \mathbb{R}$ the relative homology group $H_1(\mathbb{R}, \mathbb{Q})$ is a free abelian group. Find a basis.
- 15. Describe a CW structure on the following spaces and compute their homology:
 - (a) $\mathbb{C}P^n$.
 - (b) M_g : a closed orientable surface of genus g.
 - (c) $\mathbb{R}P^n$.
- 16. If a finite CW complex X is a union of subcomplexes A and B then show that $\chi(X) = \chi(A) + \chi(B) \chi(A \cap B)$.
- 17. Given a map $f: S^{2n} \to S^{2n}$ show that there exists some point $x \in S^{2n}$ with either f(x) = x or f(x) = -x. Deduce that every map $\mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ has a fixed point.
- 18. Let M_g denote the surface of genus g with its standard embedding in \mathbb{R}^3 . Let R denote the compact region in \mathbb{R}^3 that it bounds. Let X denote two copies of R glued along the boundary surface M_g . Compute the homology groups of X via the Mayer-Vietoris sequence for this decomposition of X into two copies of R.

24/11/2023